Лекция 14. Digital Twin: серверная часть — модели данных, события, API, интеграция со SCADA
Цель лекции: разобрать, как строится серверный контур цифрового двойника производства: какие модели данных использовать, как организовать событийную шину, как проектировать API и как интегрироваться со SCADA/PLC, с обеспечением качества данных, безопасности и наблюдаемости.
1. Серверная часть Digital Twin: что это такое
Серверная часть цифрового двойника (DT backend) — это программно‑данные компоненты, которые:
• принимают телеметрию и события от физического объекта (оборудование, линии, цех)
• хранят состояние и историю (time‑series + мастер‑данные)
• исполняют правила/аналитику/модели и формируют управляющие/диагностические события
• предоставляют API для приложений (дашборды, MES/ERP, мобильные клиенты)
• интегрируются со SCADA/PLC и внешними системами.

Важно: DT — это не “одна модель”, а целая экосистема: данные + события + сервисы + интерфейсы.
2. Слои данных: Master / Twin State / Time-series
В DT полезно разделять данные на уровни:

2.1 Master‑данные (справочники):
• активы/оборудование (asset registry)
• топология (линии, узлы, связи)
• паспорта устройств, параметры, допуски
• роли пользователей и политики доступа

2.2 Состояние двойника (Twin State):
• текущее состояние объекта: режим, уставки, alarms, last values
• вычисленные показатели: КПД, износ, остаточный ресурс, “health index”
• “digital shadow” (последние значения) + derived features

2.3 История и телеметрия (Time‑series):
• измерения по времени: датчики, события, агрегаты
• хранение с ретенцией (raw/aggregated)

Разделение помогает масштабированию и чистому API: мастер‑данные меняются редко, time‑series — очень часто, состояние — “быстрое”.
3. Модель представления объекта: Digital Twin Model
Для DT важно формализовать “что такое объект”:
• идентификаторы: asset_id, site_id, line_id
• свойства (properties): статические атрибуты
• телеметрия (telemetry): динамические показатели
• события (events): дискретные факты (авария, останов, смена режима)
• команды (commands): воздействие (уставка, старт/стоп)

Полезная практика — Digital Twin Definition (DTD): схема/контракт, который определяет структуры данных, типы датчиков, допустимые диапазоны, единицы измерения и частоты.
4. Событийная архитектура: почему “events first”
DT backend обычно событийный:
• телеметрия → поток сообщений
• сервисы подписываются на события и порождают новые события

Преимущества:
• масштабирование по подписчикам (analytics, storage, alerting)
• слабая связность (service decoupling)
• история событий (event log) как источник истины

Типы событий:
• TelemetryEvent (измерение)
• StateChangeEvent (переход режима)
• AlarmEvent (авария/предупреждение)
• MaintenanceEvent (обслуживание)
• PredictionEvent (прогноз)
• CommandEvent (команда/уставка)
5. Схема данных событий (пример, инженерно)
Рекомендуемый “конверт” события (event envelope):
• event_id (уникальный)
• event_type
• asset_id / device_id
• ts (timestamp) + ts_source (PLC/edge/cloud)
• payload (значения)
• quality (GOOD/BAD/UNCERTAIN) + reason
• seq (порядковый номер) — для дедупликации
• trace_id (для трассировки)

Такой формат облегчает дедупликацию, идемпотентность, аудит и наблюдаемость.
6. API Digital Twin: основные группы
Обычно выделяют 4 группы API:

6.1 Asset API (мастер‑данные):
• CRUD по активам, топологии, метаданным

6.2 Telemetry API:
• чтение истории (time‑series), агрегаты, выборки
• подписки на поток (WebSocket/MQTT/gRPC stream)

6.3 Twin State API:
• текущее состояние, рассчитанные показатели, KPI

6.4 Command/Control API:
• отправка команд (уставки, режимы)
• подтверждения выполнения (ack/nack)

Правило: чтение (query) отделяется от команд (command) — CQRS‑подход.
7. Интеграция со SCADA/PLC: типовые схемы
SCADA/PLC — основной источник “правды” о процессе в реальном времени.

7.1 Подключение к источникам данных:
• OPC UA (типично для промышленности)
• Modbus TCP/RTU
• PROFINET/Siemens S7 (через шлюзы)
• DNP3/IEC протоколы (энергетика)

7.2 Три интеграционных паттерна:
A) SCADA → DT (read-only): DT получает данные, но не управляет.
B) DT ↔ SCADA (closed loop): DT вырабатывает рекомендации/уставки.
C) DT как “надстройка”: SCADA остается контуром управления, DT — аналитика и оптимизация.

На практике чаще начинают с A, затем постепенно добавляют B/C с ограничениями по безопасности.
8. Команды и безопасность при интеграции
Передача команд в промышленность — зона повышенного риска.

Практики:
• “двухконтурность”: DT формирует рекомендации, а оператор/SCADA подтверждает
• RBAC/ABAC: кто имеет право менять уставки
• журналирование команд и результатов
• лимиты и валидация уставок (safety bounds)
• режимы: simulation / advisory / control

Важно: внедрение closed-loop делается поэтапно и с формальными safety‑ограничениями.
9. Качество данных: временная синхронизация и “quality flags”
Для DT критично качество данных:
• синхронизация времени (NTP/PTP; time alignment)
• обработка пропусков и дубликатов
• контроль выбросов и физических ограничений
• flags качества (GOOD/BAD/UNCERTAIN)

Рекомендуется хранить “сырое” и “очищенное” раздельно, а также логировать причины отбраковки.
10. Хранение и масштабирование
Базовый набор хранилищ:
• Relational DB (PostgreSQL) для мастер‑данных и конфигураций
• Time‑series DB (TimescaleDB/InfluxDB) для телеметрии
• Object storage (S3‑подобное) для больших файлов (модели, отчёты)
• Message broker/streaming (MQTT/Kafka) для событий

Масштабирование:
• разделение потоков по ключу (asset_id) — партиционирование
• политика ретенции и downsampling
• кэш текущего состояния (например Redis)
• отдельный контур аналитики (batch/stream)
11. Наблюдаемость и эксплуатация DT backend
Для стабильности DT backend нужны:
• метрики: ingest rate, latency, error rate, consumer lag
• логи: трассировка событий, причины отбраковки
• трассировки: end‑to‑end trace_id
• SLO: допустимая задержка обновления состояния, доступность API

Важно отслеживать “данные как сервис”: качество данных становится частью SLA.
12. Мини‑пример: поток данных (словами)
1) PLC/SCADA публикует значения (OPC UA/Modbus) на edge.
2) Edge нормализует, добавляет quality flags и event_id.
3) Сообщение попадает в брокер (MQTT/Kafka).
4) Ingest‑service пишет raw в time‑series и обновляет Twin State.
5) Analytics‑service вычисляет KPI/прогнозы и публикует PredictionEvent.
6) UI/дашборд читает Twin State API и исторические данные.
7) При необходимости оператор отправляет команду через Command API → SCADA выполняет и подтверждает.
13. Итоги
• Серверный DT — это данные + события + API + интеграции.
• Разделяйте мастер‑данные, состояние и time‑series.
• Событийная шина упрощает масштабирование и интеграции.
• Интеграция со SCADA чаще начинается с read‑only, затем добавляют advisory/control.
• Качество данных, безопасность команд и наблюдаемость — ключевые элементы эксплуатации.
Самопроверка (10 вопросов)
• Почему в DT полезно разделять мастер‑данные, Twin State и time‑series?
• Что такое “event envelope” и какие поля в нём обязательны?
• Какие типы событий чаще всего есть в цифровом двойнике?
• Что такое CQRS и почему оно полезно для API DT?
• Назовите 3 протокола интеграции DT со SCADA/PLC.
• Почему команды в промышленность нельзя просто “открыть через API без ограничений”?
• Какие методы синхронизации времени применяются в промышленной телеметрии?
• Как организовать дедупликацию событий после офлайна edge?
• Какие метрики наблюдаемости вы бы поставили на ingest‑контур?
• Какие компоненты хранилищ нужны для DT backend и зачем?
